# Sample Question Paper (2023-24) Class – X Basic Mathematics (241)

# Time Allowed: 3 Hrs

Maximum Marks: 80

### **General Instructions:**

- 1. This Question Paper has 5 Sections A, B, C, D, and E.
- 2. Section A has 20 Multiple Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 sourced based/Case Based/passage based/integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 2 marks, 2 Qs of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take  $\pi$  =22/7 wherever required if not stated.

#### **SECTION A**

If two positive integers a and b are written as a = x<sup>3</sup>y<sup>2</sup> and b = xy<sup>3</sup>; x, y are prime numbers, then HCF (a,b) is:

a) xy b) 
$$xy^2$$
 c)  $x^3y^3$  d)  $x^2y^2$ 

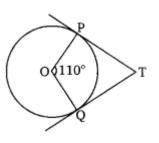
- 2. The LCM of smallest two-digit composite number and smallest composite number is:
  - a) 12 b) 4 c) 20 d) 44
- If x = 3 is one of the roots of the quadratic equation x<sup>2</sup> 2kx 6 = 0, then the value of k is

a)  $-\frac{1}{2}$  b)  $\frac{1}{2}$  c) 3 d) 2

4. The pair of equations y = 0 and y = -7 has:

- a) One solution b) Two solutions c) Infinitely many solutions d) No solution
- 5. Value(s) of k for which the quadratic equation  $2x^2 kx + k = 0$  has equal roots is :
  - a) 0 only b) 4 c) 8 only d) 0,8
- 6. The distance of the point(3, 5) from x-axis is k units, then k equals:
  - a) 3 b) 3 c) 5 d) -5
- 7. If in  $\triangle$  ABC and  $\triangle$  PQR, we have  $\frac{AB}{QR} = \frac{BC}{PR} = \frac{CA}{PQ}$  then:
  - a)  $\Delta PQR \sim \Delta CAB$  b)  $\Delta PQR \sim \Delta ABC$  c)  $\Delta CBA \sim \Delta PQR$  d)  $\Delta BCA \sim \Delta PQR$

8. Which of the following is NOT a similarity criterion?


a) AA b) SAS c) AAA d) RHS

9. In figure, if TP and TQ are the two tangents to a circle with centre O so that  $\angle POQ = 110^\circ$ , then  $\angle PTQ$  is equal to

(a) 60° (b) 70° (c) 80° (d) 90°

10. If  $\cos A = \frac{4}{5}$  then the value of tan A is:

a)  $\frac{3}{5}$  b)  $\frac{3}{4}$  c)  $\frac{4}{3}$  d)  $\frac{1}{8}$ 



11. If the height of the tower is equal to the length of its shadow, then the angle of elevation of the sun is \_\_\_\_\_

a) 30° b) 45° c) 60° d) 90°

12.  $1 - \cos^2 A$  is equal to

a)  $sin^2 A$  b)  $tan^2 A$  c)  $1 - sin^2 A$  d)  $sec^2 A$ 

13. The radius of a circle is same as the side of a square. Their perimeters are in the ratio

a) 1:1 b) 2: $\pi$  c)  $\pi$ :2 d)  $\sqrt{\pi}$ :2

14. The area of the circle is 154cm<sup>2</sup>. The radius of the circle is

a) 7cm b) 14cm c) 3.5cm d) 17.5cm

15. When a dice is thrown once, the probability of getting an even number less than 4 is

a) 1/4 b) 0 c) 1/2 d) 1/6

16. For the following distribution:

| Class     | 0-5 | 5-10 | 10-15 | 15-20 | 20-25 |
|-----------|-----|------|-------|-------|-------|
| Frequency | 10  | 15   | 12    | 20    | 9     |

The lower limit of modal class is:

a) 15 b) 25 c) 30 d) 35

17. A rectangular sheet of paper 40cm x 22cm, is rolled to form a hollow cylinder of height 40cm. The radius of the cylinder(in cm) is :

a) 3.5 b) 7 c)  $\frac{80}{7}$  d) 5

18. Consider the following frequency distribution:

| Class     | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 |
|-----------|-----|------|-------|-------|-------|
| Frequency | 12  | 10   | 15    | 8     | 11    |

The median class is:

a) 6-12 b) 12-18 c) 18-24 d) 24-30

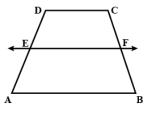
19. Assertion (A): The point (0, 4) lies on y-axis.

Reason(R): The x coordinate of the point on y-axis is zero

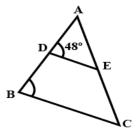
- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertions (A) is true but reason (R) is false.
- (d) Assertions (A) is false but reason (R) is true.
- 20. Assertion (A): The HCF of two numbers is 5 and their product is 150. Then their LCM is 40.

Reason(R): For any two positive integers a and b, HCF (a, b) x LCM (a, b) = a x b.

- (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A).
- (b) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A).
- (c) Assertions (A) is true but reason (R) is false.
- (d) Assertions (A) is false but reason (R) is true.


#### SECTION B

21. Find whether the following pair of linear equations is consistent or inconsistent:


$$3x + 2y = 8$$
  
 $6x - 4y = 9$ 

22. In the given figure, if ABCD is a trapezium in which AB  $\|\, \text{CD} \,\,\|\,$  EF,

then prove that  $\frac{AE}{ED} = \frac{BF}{FC}$ .



In figure, if AD = 6cm, DB = 9cm, AE = 8cm and EC = 12cm and  $\angle$ ADE = 48°. Find  $\angle$ ABC.



- 23. The length of a tangent from a point A at distance 5cm from the centre of the circle is 4cm. Find the radius of the circle.
- 24. Evaluate:  $\sin^2 60^\circ + 2\tan 45^\circ \cos^2 30^\circ$ .
- 25. What is the diameter of a circle whose area is equal to the sum of the areas of two circles of radii 40cm and 9cm?

OR

A chord of a circle of radius 10cm subtends a right angle at the centre. Find area of minor segment. (Use  $\pi$  = 3.14)

#### **SECTION C**

- 26. Prove that  $\sqrt{3}$  is an irrational number.
- 27. Find the zeroes of the quadratic polynomial  $4s^2 4s + 1$  and verify the relationship between the zeroes and the coefficients.
- 28. The coach of a cricket team buys 4 bats and 1 ball for Rs. 2050. Later, she buys 3 bats and 2 balls for Rs. 1600. Find the cost of each bat and each ball.

#### OR

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs. 27 for a book kept for seven days, while Susy paid Rs. 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

- 29. A circle touches all the four sides of quadrilateral ABCD. Prove that AB + CD = AD + BC.
- 30. Prove that

$$(\operatorname{cosec} \theta - \cot \theta)^2 = \frac{1 - \cos \theta}{1 + \cos \theta}$$

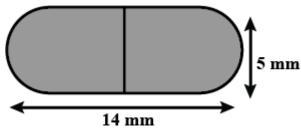
OR

Prove that sec A  $(1 - \sin A)$  (sec A + tan A) = 1.

- 31. A bag contains 6 red, 4 black and some white balls.
- (i) Find the number of white balls in the bag if the probability of drawing a white ball is  $\frac{1}{3}$ .
- (ii) How many red balls should be removed from the bag for the probability of drawing a white ball to be  $\frac{1}{2}$ ?

#### SECTION D

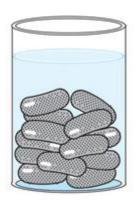
32. A train travels 360km at a uniform speed. If the speed had been 5km/h more, it would have taken 1 hour less for the same journey. Find the speed of the train.


#### OR

A motor boat whose speed is 18km/h in still water takes 1 hour more to go 24km upstream than to return downstream to the same spot. Find the speed of the stream.

33. Prove that If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

In  $\triangle$ PQR, S and T are points on PQ and PR respectively.  $\frac{PS}{SQ} = \frac{PT}{TR}$  and  $\angle$ PST =  $\angle$ PRQ. Prove that PQR is an isosceles triangle.


34. A medicine capsule is in the shape of a cylinder with two hemispheres stuck at each of its ends.The length of the entire capsule is 14mm and the diameter of the capsule is 5mm. Find its surface



area.

OR

A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like cylinder with two hemispherical ends with length 5cm and diameter 2.8cm.



| Life time (in hours) | Number of lamps |  |
|----------------------|-----------------|--|
| 1500-2000            | 14              |  |
| 2000-2500            | 56              |  |
| 2500-3000            | 60              |  |
| 3000-3500            | 86              |  |
| 3500-4000            | 74              |  |
| 4000-4500            | 62              |  |
| 4500-5000            | 48              |  |

35. The following table gives the distribution of the life time of 400 neon lamps:

Find the average life time of a lamp.

# SECTION E

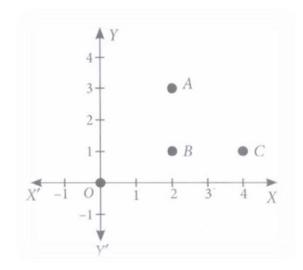
## 36. CASE STUDY 1

India is competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in 6th year and 22600 in 9th year.

1) In which year, the production is Rs 29,200.

2) Find the production during 8<sup>th</sup> year.




OR

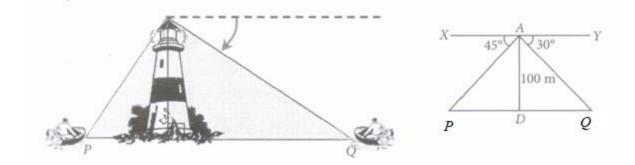
Find the production during first 3 years.

3) Find the difference of the production during 7th year and 4th year.

### 37. CASE STUDY 2

Alia and Shagun are friends living on the same street in Patel Nagar. Shagun's house is at the intersection of one street with another street on which there is a library. They both study in the same school and that is not far from Shagun's house. Suppose the school is situated at the point *O*, i.e., the origin, Alia's house is at A. Shagun's house is at B and library is at C. Based on the above information, answer the following questions.




- (i) How far is Alia's house from Shagun's house?
- (ii) How far is the library from Shagun's house?
- (iii) Show that for Shagun, school is farther compared to Alia's house and library.

OR

Show that Alia's house, shagun's house and library for an isosceles right triangle.

#### 38. CASE STUDY 3

A boy is standing on the top of light house. He observed that boat P and boat Q are approaching the light house from opposite directions. He finds that angle of depression of boat P is 45° and angle of depression of boat Q is 30°. He also knows that height of the light house is 100 m.



Based on the above information, answer the following questions.

(i) What is the measure of  $\angle APD$ ?

(ii) If  $\angle$ YAQ = 30°, then  $\angle$ AQD is also 30°, Why?

(iii) How far is boat P from the light house? OR

How far is the boat Q from the light house?