Marking Scheme Class X Session 2023-24 MATHEMATICS STANDARD (Code No.041)

TIME: 3 hours

MAX.MARKS: 80

	SECTION A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) xy ²	1
2.	(b) 1 zero and the zero is '3'	1
3.	(b) $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	1
4.	(c) 2 distinct real roots	1
5.	(c) 7	1
6.	(a) 1:2	1
7.	(d) infinitely many	1
8.	(b) $\frac{ac}{b}$	1
	b+c	
9.	(b) 100°	1
10.	(d) 11 cm	1
11.	$\sqrt{b^2-a^2}$	1
	(c) $\frac{h}{h}$	
12.	(d) cos A	1
13.	(d) 60°	1
14.	(a) 2 units	1
15.	(a) 10m	1
16.	$4-\pi$	1
	(b) $\overline{4}$	
17.	(b) $\frac{22}{2}$	1
	(b) $\frac{1}{46}$	
18.	(d) 150	1
19.	(a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of	1
20	assertion (A)	1
20.	(c) Assertion (A) is true but reason (R) is false. SECTION B	1
	Section B consists of 5 questions of 2 marks each.	
21.	Let us assume, to the contrary, that $\sqrt{2}$ is rational.	
-1.	a a a	1/2
	So, we can find integers <i>a</i> and <i>b</i> such that $\sqrt{2} = \frac{a}{b}$ where <i>a</i> and <i>b</i> are coprime.	
	So, b $\sqrt{2}$ = a.	
	Squaring both sides,	
	we get $2b^2 = a^2$. Therefore, 2 divides a^2 and $a = 2$ divides a	1⁄2
	Therefore, 2 divides a^2 and so 2 divides a.	
	So, we can write a = 2c for some integer c. Substituting for a, we get $2b^2 = 4c^2$, that is, $b^2 = 2c^2$.	1.
	This means that 2 divides b^2 , and so 2 divides b	1/2
	Therefore, a and b have at least 2 as a common factor.	
	But this contradicts the fact that a and b have no common factors other than 1.	1/2
	This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.	72
	So, we conclude that $\sqrt{2}$ is irrational.	
L		<u>ل</u> ــــــــــ

22.	ABCD is a parallelogram.	1/2
	AB = DC = a	12
	Point P divides AB in the ratio 2:3	
	$AP = \frac{2}{5}a, BP = \frac{3}{5}a$	
	point Q divides DC in the ratio 4:1.	1/2
	$DQ = \frac{4}{5} a, CQ = \frac{1}{5} a$	
	$\Delta APO \sim \Delta CQO [AA similarity]$	1/2
	$\frac{AP}{CQ} = \frac{PO}{QO} = \frac{AO}{CO}$	12
	$\frac{2}{2}$	1⁄2
	$\frac{AO}{CO} = \frac{\frac{2}{5}a}{\frac{1}{5}a} = \frac{2}{1} \implies OC = \frac{1}{2}OA$	
	$\frac{1}{5}$	
23.	PA = PB; CA = CE; DE = DB [Tangents to a circle]	1/2
	Perimeter of APCD = PC + CD + PD A	72
	= PC + CE + ED + PD	
	$= PC + CA + BD + PD \qquad ()_{E} \qquad P$	1
	$= PA + PB$ Perimeter of $\triangle PCD = PA + PA = 2PA = 2(10) = 20$	$\frac{1}{\frac{1}{2}}$
	B / D cm	/1
24.	$\therefore \tan(A+B) = \sqrt{3} \therefore A+B = 60^0 \qquad \dots (1)$	1/2
	$\therefore \tan(A - B) = \frac{1}{\sqrt{3}} \therefore A - B = 30^0 \qquad(2)$	1/2 1/2
	Adding (1) & (2), we get $2A=90^{\circ} \implies A = 45^{\circ}$	1/2
	Also (1) –(2), we get $2B = 30^{\circ} \implies B = 45^{\circ}$ [or]	
	3	
	$2\csc^2 30 + x\sin^2 60 - \frac{3}{4}\tan^2 30 = 10$	
	$\Rightarrow 2(2)^2 + x\left(\frac{\sqrt{3}}{2}\right)^2 - \frac{3}{4}\left(\frac{1}{\sqrt{3}}\right)^2 = 10$	
	$\Rightarrow 2(2)^2 + x\left(\frac{1}{2}\right) - \frac{1}{4}\left(\frac{1}{\sqrt{3}}\right) = 10$	1
	$\Rightarrow \qquad 2(4) + x\left(\frac{3}{4}\right) - \frac{3}{4}\left(\frac{1}{3}\right) = 10$	1⁄2
	$\Rightarrow \qquad 8 + x \left(\frac{3}{4}\right) - \frac{1}{4} = 10$	
	$\Rightarrow \qquad 32 + x(3) - 1 = 40$	1/2
	$\Rightarrow \qquad 3x = 9 \Rightarrow x = 3$	
25.	$\Rightarrow 3x = 9 \Rightarrow x = 3$ Total area removed = $\frac{\angle A}{360} \pi r^2 + \frac{\angle B}{360} \pi r^2 + \frac{\angle C}{360} \pi r^2$ = $\frac{\angle A + \angle B + \angle C}{100} \pi r^2$	1⁄2
	$=\frac{\angle A+\angle B+\angle C}{360}\pi r^2$	
	$=\frac{180}{360}\pi r^2$	1⁄2
	$= \frac{180}{360} \times \frac{22}{7} \times (14)^2 $ ^{1/2}	1/
		1⁄2
	= 308 cm ²	
	The side of a square = Diameter of the semi-circle = a	
	Area of the unshaded region $=$ Area of a square of side (a) + 4(Area of a semi-circle of diameter (a))	1⁄2
	= Area of a square of side 'a' + 4(Area of a semi-circle of diameter 'a') The horizontal/vertical extent of the white region = 14-3-3 = 8 cm	1/2
	Radius of the semi-circle + side of a square + Radius of the semi-circle = 8 cm	

	2 (radius of the semi-circle) + side of a square = 8 cm	
	$2a = 8 \text{ cm} \Rightarrow a = 4 \text{ cm}$	1/2
	Area of the unshaded region	/2
	= Area of a square of side 4 cm + 4 (Area of a semi-circle of diameter 4 cm)	
	$= (4)^{2} + 4 X \frac{1}{2} \pi (2)^{2} = 16 + 8\pi \text{ cm}^{2}$	1/2
	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26.	Number of students in each group subject to the given condition = HCF (60,84,108)	1/2
	HCF(60,84,108) = 12	1/2
	Number of groups in Music = $\frac{60}{12}$ = 5	1/2
	Number of groups in Dance = $\frac{\overline{84}}{12}$ = 7	1/2
	12	1/2
	Number of groups in Handicrafts = $\frac{108}{12}$ = 9	1/2
	Total number of rooms required = 21^{12}	12
27.	$P(x) = 5x^2 + 5x + 1$	1/2
	$a + b = \frac{-b}{-5} = \frac{-5}{-1}$	
	$a + p = \frac{a}{a} - \frac{5}{5} - \frac{-1}{5}$	1/2
	$\alpha\beta = \frac{c}{c} = \frac{1}{c}$	1⁄2
	$\alpha + \beta = \frac{-b}{a} = \frac{-5}{5} = -1$ $\alpha \beta = \frac{c}{a} = \frac{1}{5}$ $\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta$	
	$= (-1)^2 - 2\left(\frac{1}{5}\right)$	1⁄2
		1/2
	$= 1 - \frac{2}{5} = \frac{3}{5}$ $\alpha^{-1} + \beta^{-1} = \frac{1}{\alpha} + \frac{1}{\beta}$	12
	1 - 1 + 0 - 1 = 1 - 1	1/2
	$=\frac{(\alpha+\beta)}{\alpha\beta}=\frac{(-1)}{\frac{1}{2}}=-5$	
	$=\frac{1}{\alpha\beta} - \frac{1}{\frac{1}{2}} - \frac{-5}{2}$	
28.	Let the ten's and the unit's digits in the first number be x and y, respectively.	
20.	So, the original number = $10x + y$	
	When the digits are reversed, x becomes the unit's digit and y becomes the ten's	
	Digit.	1/2
	So the obtain by reversing the digits= $10y + x$	
	According to the given condition.	
	(10x + y) + (10y + x) = 66	
	i.e., $11(x + y) = 66$	1/2
	i.e., $x + y = 6 (1)$	
	We are also given that the digits differ by 2,	1⁄2
	therefore, either $x - y = 2 (2)$	1⁄2
	or $y - x = 2 (3)$	
	If $x - y = 2$, then solving (1) and (2) by elimination, we get $x = 4$ and $y = 2$.	1⁄2
	In this case, we get the number 42.	
	If $y - x = 2$, then solving (1) and (3) by elimination, we get $x = 2$ and $y = 4$.	1⁄2
	In this case, we get the number 24.	
	Thus, there are two such numbers 42 and 24.	
	[0r]	1/
	Let $\frac{1}{\sqrt{x}}$ be 'm' and $\frac{1}{\sqrt{y}}$ be 'n',	1⁄2
	Then the given equations become	
	2m + 3n = 2	1/2
	4m - 9n = -1	12

	$(2m + 3n = 2) X - 2 \Rightarrow -4m - 6n = -4$ (1)	
	4m - 9n = -1 $4m - 9n = -1$ (2)	
	Adding (1) and (2)	
	We get $-15n = -5 \Rightarrow n = \frac{1}{2}$	1⁄2
	3	
	Substituting n = $\frac{1}{2}$ in 2m + 3n = 2, we get	
	5	1⁄2
	2m + 1 = 2	
	2m = 1	
	$m = \frac{1}{2}$	1
	$m = \frac{1}{2} \implies \sqrt{x} = 2 \implies x = 4 \text{ and } n = \frac{1}{3} \implies \sqrt{y} = 3 \implies y = 9$	
29.	$\frac{11}{2} \qquad \qquad$	
29.	$\angle OAB = 30^{\circ}$	
	$\angle OAP = 90^{\circ}$ [Angle between the tangent and	
	the radius at the point of contact] $(\circ \langle \rangle) > P$	1/
	$\angle PAB = 90^{\circ} - 30^{\circ} = 60^{\circ}$	1⁄2
	AP = BP [Tangents to a circle from an external point] B	4.
	$\angle PAB = \angle PBA$ [Angles opposite to equal sides of a triangle]	1⁄2
	In $\triangle ABP$, $\angle PAB + \angle PBA + \angle APB = 180^{\circ}$ [Angle Sum Property]	1
	$60^{\circ} + 60^{\circ} + \angle APB = 180^{\circ}$	
	$\angle APB = 60^{\circ}$	1⁄2
	$\therefore \Delta ABP$ is an equilateral triangle, where AP = BP = AB.	
	PA = 6 cm	1⁄2
	In Right $\triangle OAP$, $\angle OPA = 30^{\circ}$	
	$\tan 30^\circ = \frac{OA}{DA}$	
	1 OA	1⁄2
	$\frac{1}{\sqrt{3}} = \frac{1}{6}$	
	$\tan 30^\circ = \frac{OA}{PA}$ $\frac{1}{\sqrt{3}} = \frac{OA}{6}$ $OA = \frac{6}{\sqrt{3}} = 2\sqrt{3}cm$	1⁄2
	[or]	
	P	
	Let \angle TPQ = θ	
	\angle TPO = 90° [Angle between the tangent and	
	the radius at the point of contact]	1⁄2
	$\angle OPQ = 90^{\circ} - \theta$	1
	TP = TQ [Tangents to a circle from an external	1
	point]	1
		1⁄2
	\angle TPQ = \angle TQP = θ [Angles opposite to equal sides of a triangle]	1⁄2
	In $\triangle PQT$, $\angle PQT + \angle QPT + \angle PTQ = 180^{\circ}$ [Angle Sum Property]	1/2
	$\theta + \theta + \angle PTQ = 180^{\circ}$	1
	$\angle PTQ = 180^{\circ} - 2 \theta$	1/2
	$\angle PTQ = 2 (90^{\circ} - \theta)$	1/2
	$\angle PTQ = 2 \angle OPQ$ [using (1)]	
30.	Given, 1 + sin ² θ = 3 sin θ cos θ	
	Dividing both sides by $\cos^2\theta$,	1
	$\frac{1}{\cos^2\theta}$ + tan ² θ = 3 tan θ	1
	$sec^2\theta$ + $tan^2\theta$ = 3 $tan\theta$	1⁄2
	$1 + \tan^2\theta + \tan^2\theta = 3 \tan \theta$	1⁄2
	$1 + 2\tan^2\theta = 3\tan^2\theta$ $1 + 2\tan^2\theta = 3\tan^2\theta$	1⁄2
	$1 + 2 \tan^2 \theta = 3 \tan^2 \theta$ $2 \tan^2 \theta - 3 \tan^2 \theta + 1 = 0$	1⁄2
	If $\tan \theta = x$, then the equation becomes $2x^2 - 3x + 1 = 0$	1
		1

			$\Rightarrow (x-1)(x-1)$	(2x-1) = 0 x =	$1 \text{ or } \frac{1}{2}$		
				$\tan \theta = 1$. –		1
31.		ſ			-		
	Length [in mm]	Number of leaves (f)	CI	Mid x	d	fd	
	118 – 126	3	117.5-126.5	122	-27	-81	
	127 - 135	5	126.5-135.5	131	-18	-90	
	136 - 144	9	135.5–144.5	140	-9	-81	
	145 - 153	12	144.5 - 153.5	a = 149	0	0	
	154 - 162	5	153.5 - 162.5	158	9	45	2
	163 - 171	4	162.5 - 171.5	167	18	72	1/2
	172 - 180	2	171.5 - 180.5	176	27	54	1/2
		Mean	$= a + \frac{\sum fd}{\sum f} = 149 -$	$+\frac{-81}{10}$			
			2 <i>1</i> 1 = 149 – 2.025 = 1				
	Average length	of the leaves :	= 146.975 SECTI				
			SECT				
		Section D	consists of 4 qu	lestions of 5 n	narks each		
32.	The spee the spee	ed of the boat	ream be x km/h. upstream = (18 - lownstream = (18 upstream = $\frac{dista}{spe}$	(x) km/h and 8 + x) km/h. $\frac{nce}{24} = \frac{24}{24}$ h	ours		1
		taken to go d	ownstream = $\frac{1}{s_1}$	$\frac{stance}{peed} = \frac{24}{18+x}$	hours		1
	necorum t	o the question	$\frac{24}{18-x} - \frac{24}{18+x}$	= 1			1
		x is the speed	-24(18 - x) = (1) $x^{2} + 48x - 324$ x = -324 of the stream, it the speed of the	= 0 = 6 or – 54 cannot be nega			1
			[0	rl			1
		-	the smaller pipe er pipe = $(x - 10)$	to fill the tank =	= x hr.		1⁄2
			by smaller pipe in	$\begin{array}{c} x\\ 1\end{array}$			1
			by larger pipe in 1 in 9 $\frac{3}{8} = \frac{75}{8}$ hour	x - 10	ipes together.		1⁄2
			o 8 by both the pipes	8			1⁄2
				/5		5	

	Therefore, $\frac{1}{x} + \frac{1}{x - 10} = \frac{8}{75}$	1/2
	$8x^2 - 230x + 750 = 0$	
	$x = 25, \frac{30}{8}$	1
	Time taken by the smaller pipe cannot be $30/8 = 3.75$ hours, as the time taken by	1⁄2
	the larger pipe will become negative, which is logically not possible. Therefore, the time taken individually by the smaller pipe and	1/2
	the larger pipe will be 25 and $25 - 10 = 15$ hours, respectively.	72
33.	(a) Statement – $\frac{1}{2}$	
	Given and To Prove – $\frac{1}{2}$	
	Figure and Construction 1/2	3
	Proof – 1 ½ ^A	
	[b] Draw DG BE	
		1/2
	In \triangle ABE, $\frac{AB}{BD} = \frac{AE}{GE}$ [BPT]	12
	CF = FD [F is the midpoint of DC](i)	1/2
	In Δ CDG, $\frac{DF}{CF} = \frac{GE}{CE} = 1$ [Mid point theorem]	1/
	GE = CE(ii)	1⁄2
	$\angle CEF = \angle CFE $ [Given]	
	CF = CE [Sides opposite to equal angles](iii)	1/2
	From (ii) & (iii) $CF = GE(iv)$	
	From (i) & (iv) $GE = FD$	
	$\therefore \frac{AB}{BD} = \frac{AE}{GE} \Longrightarrow \frac{AB}{BD} = \frac{AE}{FD}$	
34.	BD GE BD FD	
	Length of the pond, l= 50m, width of the pond, b = 44m	
	Water level is to rise by, h = 21 cm = $\frac{21}{100}$ m	
		1
	Volume of water in the pond = lbh = $50 \times 44 \times \frac{21}{100} \text{ m}^3 = 462 \text{ m}^3$	1
	Diameter of the pipe = 14 cm_{7}	
	Radius of the pipe, $r = 7cm = \frac{7}{100}m$	
	Area of cross-section of pipe = πr^2	
	$= \frac{22}{7} \times \frac{7}{100} \times \frac{7}{100} = \frac{154}{10000} \text{ m}^2$	1
		1⁄2
	Rate at which the water is flowing through the pipe, h = 15km/h = 15000 m/h Volume of water flowing in 1 hour = Area of cross-section of pipe x height of water	1/2
	coming out of pipe	12
	$= \left(\frac{154}{10000} \times 15000\right) m^3$	1
	Time required to fill the need Volume of the pond	
	Time required to fin the poind = $\frac{Volume of water flowing in 1 hour}{Volume of water flowing in 1 hour}$	1
	$=\frac{462 \times 10000}{154 \times 15000} = 2 \text{ hours}$	
	154×15000 Speed of water if the rise in water level is to be attained in 1 hour = 30km/h	
	[or]	
	[01]	

		1.4			
	Radius of the cylindrical tent $(r) =$				
	Total height of the tent = Height of the cylinder =		\wedge	10.5m	
	Height of the Conical part			No.5m	1/2
	Slant height of the cone $(l) = \sqrt{h^2}$		\leftarrow		12
		$(1.5)^2 + (14)^2$	14m	3m	
	•	$\frac{1}{125} + \frac{1}{196}$			
		5.25 + 190 5.25 = 17.5 m			1
	Curved surface area of cylindrical				
		$= 2\pi rh$			
		$= 2x \frac{22}{7} \times 14 \times 3$	3		1
		$= 264 \text{ m}^2$			-
	Curved surface area of conical por				
		=πrl			
		$=\frac{22}{7} \times 14 \times 17.5$			1
		$= 770 \text{ m}^2$			1 ½
	Total curved surface area = 264 n	-	1034 m ²		12
	Provision for stitching and wastag		_		
		-			1⁄2
	Area of canvas to be purchased Cost of canvas = Rate × Surface are		1060 m ²		
	Cost of callvas – Rate * Surface al	ea			1⁄2
	= 500 x 1060 = ₹ 5	,30,000/-			
35.	T			I	
	Marks obtained	Number of students	Cumulative		
	20 - 30		frequency		
		р 1г	р		
	30 - 40	15	p + 15		
	40 - 50	25	p + 40		1
	50 - 60	20	p + 60		
	60 – 70	q	p + q + 60		
	70 - 80	8	p + q + 68		1/2
	80 - 90	10	p + q + 78		1/2
		90			
	p + q + 78 = 90		ı		
	10				
	p + q = 12 Median =(l) + $\frac{\frac{n}{2} - cf}{f}$. h				
	Median = $(l) + \frac{l}{f}$. h				
	$50 = 50 + \frac{45 - (p + 40)}{20} \cdot 10$				1⁄2
	20				1/
	$\frac{45 - (p + 40)}{20} \cdot 10 = 0$				1/2
	45 - (p + 40) = 0				1/2
	P = 5				1/2
	5 + q = 12 q = 7				
					1
	Mode = $l + \frac{f1-f0}{2f1-f0-f2}$. h				

	25-15	
	$= 40 + \frac{25 - 15}{2(25) - 15 - 20} \cdot 10$	
	$=40 + \frac{100}{15} = 40 + 6.67 = 46.67$	
	SECTION E	
36.	(i) Number of throws during camp. a = 40; d = 12	1
	$t_{11} = a + 10d$	
	$= 40 + 10 \times 12$	
	= 160 <i>throws</i>	
	(ii) $a = 7.56 \text{ m}; d = 9 \text{ cm} = 0.09 \text{ m}$	1/2
	n = 6 weeks	1/2
	$t_n = a + (n-1) d$	1/2
	= 7.56 + 6(0.09)	
	= 7.56 + 0.54	1/2
	Sanjitha's throw distance at the end of 6 weeks $= 8.1 \text{ m}$	
	(or)	
	a = 7.56 m; d = 9 cm = 0.09 m	1/2
	$t_n = 11.16 \text{ m}$	1/2
	$t_n = a + (n-1) d$ 11 16 - 7 56 + (n-1) (0.00)	
	11.16 = 7.56 + (n-1) (0.09) 3.6 = (n-1) (0.09)	1/2
	3.6	
	$n-1 = \frac{3.6}{0.09} = 40$	
	n = 41	1/2
	Sanjitha's will be able to throw 11.16 m in 41 weeks.	
	(iii) a = 40; d = 12; n = 15	
	$S_n = \frac{n}{2} [2a + (n-1) d]$	1/2
	$S_n = \frac{15}{2} [2(40) + (15-1) (12)]$	
	$=\frac{15}{2}[80+168]$	
	$=\frac{15}{2}$ [248] =1860 throws	1⁄2
37.	(i) Let D be (a,b), then	
	Mid point of AC = Midpoint of BD	
		1/2
	$\left(\frac{1+6}{2},\frac{2+6}{2}\right) = \left(\frac{4+a}{2},\frac{3+b}{2}\right)$	
	4 + a = 7 $3 + b = 8$	
	a=3 $b=5$	
	Central midfielder is at (3,5)	1/2
	central infunction is at (3,3)	/2

(ii) $GH = \sqrt{(-3-3)^2 + (5-1)^2} = \sqrt{36+16} = \sqrt{52} = 2\sqrt{13}$ $GK = \sqrt{(0+3)^2 + (3-5)^2} = \sqrt{9+4} = \sqrt{13}$ $HK = \sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$ $GK + HK = GH \Rightarrow G, H \& K \text{ lie on a same straight line}$ $CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ $CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E $\Rightarrow B$ is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) (i) tan $45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
$GK = \sqrt{(0 + 3)^{2} + (3 - 5)^{2}} = \sqrt{9 + 4} = \sqrt{13}$ $HK = \sqrt{(3 - 0)^{2} + (1 - 3)^{2}} = \sqrt{9 + 4} = \sqrt{13}$ $GK + HK = GH \Rightarrow G, H \& K \text{ lie on a same straight line}$ $CJ = \sqrt{(0 - 5)^{2} + (1 + 3)^{2}} = \sqrt{25 + 16} = \sqrt{41}$ $CI = \sqrt{(0 + 4)^{2} + (1 - 6)^{2}} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, -\frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ $C \text{ is NOT the mid-point of IJ}$ $(iii) A, B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B \text{ is the mid-point of AE} \left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3) 1 + a = 4; a = 3. 4+b = -6; b = -10 \text{ E is } (3, -10) (ii) \tan 45^{\circ} = \frac{80}{CB} \Rightarrow CB = 80\text{m}$
HK = $\sqrt{(3-0)^2 + (1-3)^2} = \sqrt{9+4} = \sqrt{13}$ GK +HK = GH \Rightarrow G,H & K lie on a same straight line [or] CJ = $\sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ CI = $\sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a = 4; a = 3. $4+b = -6; b = -10$ E is (3,-10) 38. (i) tan 45° = $\frac{80}{CE}$ \Rightarrow CB = 80m
$\begin{bmatrix} [or] \\ CJ = \sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41} \\ CI = \sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41} \\ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) \\ Mid-point of IJ = \left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right) \\ C \text{ is NOT the mid-point of IJ} \\ \end{bmatrix} = \left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right) \\ C \text{ is NOT the mid-point of IJ} \\ \end{bmatrix} \begin{bmatrix} (iii) & A,B \text{ and E lie on the same straight line and B is equidistant from A and E} \\ \Rightarrow B \text{ is the mid-point of AE} \\ \left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3) \\ 1+a=4; a=3. \qquad 4+b=-6; b=-10 \text{ E is } (3,-10) \\ \end{bmatrix} \begin{bmatrix} (i) & \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) & \tan 30^\circ = \frac{80}{CE} \\ \end{bmatrix}$
CJ = $\sqrt{(0-5)^2 + (1+3)^2} = \sqrt{25+16} = \sqrt{41}$ CI = $\sqrt{(0+4)^2 + (1-6)^2} = \sqrt{16+25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) 38. (i) tan 45° = $\frac{80}{CE}$ 2
CI = $\sqrt{(0 + 4)^2 + (1 - 6)^2} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1 + a = 4; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
CI = $\sqrt{(0 + 4)^2 + (1 - 6)^2} = \sqrt{16 + 25} = \sqrt{41}$ Full-back J(5,-3) and centre-back I(-4,6) are equidistant from forward C(0,1) Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1 + a = 4; a = 3. $4+b = -6; b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$
Mid-point of IJ = $\left(\frac{5-4}{2}, \frac{-3+6}{2}\right) = \left(\frac{1}{2}, \frac{3}{2}\right)$ C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is (3,-10) 38. (i) tan $45^\circ = \frac{80}{CB} \Rightarrow$ CB = 80m (ii) tan $30^\circ = \frac{80}{CE}$
C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is $(3,-10)38. (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m(ii) \tan 30^\circ = \frac{80}{CE}$
C is NOT the mid-point of IJ (iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ 1+a=4; a=3. $4+b=-6; b=-10$ E is $(3,-10)38. (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m(ii) \tan 30^\circ = \frac{80}{CE}$
(iii) A,B and E lie on the same straight line and B is equidistant from A and E \Rightarrow B is the mid-point of AE $\left(\frac{1+a}{2}, \frac{4+b}{2}\right) = (2, -3)$ $1+a=4$; $a=3$. $4+b=-6$; $b=-10$ E is (3,-10)38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$
$\Rightarrow B \text{ is the mid-point of AE} \begin{pmatrix} \frac{1+a}{2}, \frac{4+b}{2} \end{pmatrix} = (2, -3) \\ 1+a = 4; a = 3. \\ 4+b = -6; b = -10 \text{ E is } (3, -10) \\ \hline 38. \\ (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) \tan 30^\circ = \frac{80}{CE} \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\$
$\Rightarrow B \text{ is the mid-point of AE} \begin{pmatrix} \frac{1+a}{2}, \frac{4+b}{2} \end{pmatrix} = (2, -3) \\ 1+a = 4; a = 3. \\ 4+b = -6; b = -10 \text{ E is } (3, -10) \\ \hline 38. \\ (i) \tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) \tan 30^\circ = \frac{80}{CE} \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\ \hline 1 \\ 1 \\$
$1 + a = 4$; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$ 1/2
$1 + a = 4$; $a = 3$. $4 + b = -6$; $b = -10$ E is (3,-10) 38. (i) $\tan 45^\circ = \frac{80}{CB} \Rightarrow CB = 80m$ (ii) $\tan 30^\circ = \frac{80}{CE}$ 1/2
$ \begin{array}{c} 1 + a = 4; a = 3. \\ 38. \\ (i) \tan 45^{\circ} = \frac{80}{CB} \Rightarrow CB = 80m \\ \hline (ii) \tan 30^{\circ} = \frac{80}{CE} \\ 1 & 80 \\ \end{array} $
$\begin{array}{c c} 38. & (i) & \tan 45^\circ = \frac{30}{CB} \Rightarrow CB = 80m \\ \hline & (ii) & \tan 30^\circ = \frac{80}{CE} \\ & 1 & 80 \\ \end{array}$
(ii) $\tan 30^\circ = \frac{80}{CE}$
$\begin{array}{c} CE \\ 1 & 80 \end{array}$
$\Rightarrow \frac{1}{\sqrt{3}} = \frac{80}{CE}$
$\Rightarrow CE = 80\sqrt{3}$
Distance the bird flew = AD = BE = CE-CB = $80\sqrt{3} - 80 = 80(\sqrt{3} - 1)$ m
(or)
$\tan 60^\circ = \frac{80}{CC}$
$\Rightarrow \sqrt{3} = \frac{CG}{CG}$
$\Rightarrow \sqrt{3} = \frac{1}{CG}$
\Rightarrow CG = $\frac{80}{\sqrt{3}}$
$\sqrt{3}$ Distance the ball travelled after hitting the tree =FA=GB = CB -CG
GB = 80 - $\frac{80}{\sqrt{3}}$ = 80 (1 - $\frac{1}{\sqrt{3}}$) m
(iii) Speed of the bird = $\frac{Distance}{Time \ taken} = \frac{20(\sqrt{3}+1)}{2} \text{ m/sec}$
Time taken 2
$= \frac{20(\sqrt{3}+1)}{2} \times 60 \text{ m/min} = 600(\sqrt{3}+1) \text{ m/min}$