Press "Enter" to skip to content

Derivative Formulas with Examples, Differentiation Rules

derivative formula

Derivative Formula:

Actual derivative formula:
If y = f(x), then
\(\LARGE f’(x)=\lim_{\triangle x \rightarrow 0}\frac{f(x+ \triangle x)-f(x)}{\triangle x}\)

Basic Derivative formula:

  1. \(\frac{d}{dx}\)(c) = 0, where c is constant.
  2. \(\frac{d}{dx}\)(x) = 1
  3. \(\frac{d}{dx}\)(xn) = n xn-1
  4. \(\frac{d}{dx}\)[f(x)]n = n [f(x)]n-1 \(\frac{d}{dx}\) f(x)
  5. \(\frac{d}{{dx}}\sqrt x= \frac{1}{{2\sqrt x }}\)
  6. \(\frac{d}{dx}\) C∙f(x) = C ∙ \(\frac{d}{dx}\) f(x) = Cf’(x)
  7. \(\frac{d}{{dx}}[f(x) \pm g(x)] = \frac{d}{{dx}}f(x) \pm \frac{d}{{dx}}g(x) = f'(x) \pm g'(x)\)
  8. \(\frac{d}{dx}\) [f(x) g(x)] = f(x) \(\frac{d}{dx}\) g(x) + g(x) \(\frac{d}{dx}\) f(x)
    This is called product rule of derivative.
  9. \(\frac{d}{{dx}}[\frac{{f(x)}}{{g(x)}}] = \frac{{g(x)\frac{d}{{dx}}f(x) – f(x)\frac{d}{{dx}}g(x)}}{{{{[g(x)]}^2}}}\)
    This is quotient rule of derivative.

Chain Rule:

  1. [f(g(x))]’= f’(g(x))g’(x)
  2. \(\frac{du}{dx}\) = \(\frac{du}{dv}\)\(\frac{dv}{dx}\)
  3. \(\large \frac{du}{dx}=\frac{\frac{du}{dv}}{\frac{dx}{dv}}\)
  4. \(\large \frac{dy}{dx}=\frac{1}{\frac{dx}{dy}}\)

Logarithm Derivative Formula:

  1. \(\frac{d}{dx}\)ln x = \(\frac{1}{x}\)
  2. \(\frac{d}{dx}\)logax = \(\frac{1}{x\:ln\:a}\)
  3. \(\frac{d}{{dx}}\ln f(x) = \frac{1}{{f(x)}}\frac{d}{{dx}}f(x)\)
  4. \(\frac{d}{{dx}}{\log _a}f(x) = \frac{1}{{f(x)\ln a}}\frac{d}{{dx}}f(x)\)

Derivative formula for exponential functions:

  1. \(\frac{d}{dx}\)ex = ex
  2. \(\frac{d}{{dx}}{a^x} = {a^x}\ln a\)
  3. \(\frac{d}{dx}\)ef(x) = ef(x) f’(x)
  4. \(\frac{d}{dx}\) af(x) = af(x)ln a f’(x)
  5. \(\frac{d}{dx}\) xx = xx(1 + ln x)

Derivative Formula for Trigonometric Formula:

  1. \(\frac{d}{dx}\) sin x = cos x
  2. \(\frac{d}{dx}\) cos x = – sinx
  3. \(\frac{d}{dx}\) tan x = sec2 x
  4. \(\frac{d}{dx}\) cot x = – cosec2x
  5. \(\frac{d}{dx}\) sec x = sec xtan x
  6. \(\frac{d}{dx}\) cosec x = – cosec xcot x

Derivative formula for Inverse Trigonometric functions:

  1. \(\frac{d}{{dx}}si{n^{ – 1}}x = \frac{1}{{\sqrt {1 – {x^2}} }},{\text{ }} – 1 < x < 1\)
  2. \(\frac{d}{{dx}}co{s^{ – 1}}x = \frac{{ – 1}}{{\sqrt {1 – {x^2}} }},{\text{ }} – 1 < x < 1\)
  3. \(\frac{d}{{dx}}ta{n^{ – 1}}x = \frac{1}{{1 + {x^2}}}\)
  4. \(\frac{d}{{dx}}co{t^{ – 1}}x = \frac{{ – 1}}{{1 + {x^2}}}\)
  5. \(\frac{d}{{dx}}se{c^{ – 1}}x = \frac{1}{{x\sqrt {{x^2} – 1} }},{\text{ }}\left| x \right| > 1\)
  6. \(\frac{d}{{dx}}co{\sec ^{ – 1}}x = \frac{{ – 1}}{{x\sqrt {{x^2} – 1} }},{\text{ }}\left| x \right| > 1\)

Derivative formula for hyperbolic functions:

  1. \(\frac{d}{dx}\) sinh x = cosh x
  2. \(\frac{d}{dx}\) cosh x = sinh x
  3. \(\frac{d}{dx}\) tanh x = sech2x
  4. \(\frac{d}{dx}\) coth x = – cosech2x
  5. \(\frac{d}{dx}\) sech x = -sech xtanh x
  6. \(\frac{d}{dx}\) cosech x = – cosech xcoth x

Derivative formula for Inverse Hyperbolic functions:

  1. \(\frac{d}{{dx}}Sin{h^{ – 1}}x = \frac{1}{{\sqrt {1 + {x^2}} }}\)
  2. \(\frac{d}{{dx}}Cos{h^{ – 1}}x = \frac{1}{{\sqrt {{x^2} – 1} }}\)
  3. \(\frac{d}{{dx}}Tan{h^{ – 1}}x = \frac{1}{{1 – {x^2}}},{\text{ }}\left| x \right| < 1\)
  4. \(\frac{d}{{dx}}Cot{h^{ – 1}}x = \frac{1}{{{x^2} – 1}},{\text{ }}\left| x \right| > 1\)
  5. \(\frac{d}{{dx}}Sec{h^{ – 1}}x = \frac{{ – 1}}{{x\sqrt {1 – {x^2}} }},{\text{ }}0 < x < 1\)
  6. \(\frac{d}{{dx}}Co\sec {h^{ – 1}}x = \frac{{ – 1}}{{x\sqrt {1 + {x^2}} }},{\text{ }}x > 0\)

Derivative formula examples:

  1. Find the derivative of the function given by f(x) = sin (x)2.

Solution:
f(x) = sin(x2)
f’(x) = \(\frac{d}{dx}\)( sin x2) x \(\frac{d}{dx}\) x2
= (cos x2) (2x)
= 2x cos x2

  1. Find \(\frac{dy}{dx}\) if x – y = π.

Solution:
We can write the equation as
y = x – π
\(\frac{dy}{dx}\) = 1

  1. Find \(\frac{dy}{dx}\), if y + sin y = cos x.

Solution:
We differentiate the relationship directly with respect to x,
\(\frac{dy}{dx}\) + \(\frac{d}{dx}\)(sin y) = \(\frac{d}{dx}\)(cos x)
which implies using chain rule
\(\frac{dy}{dx}\) + cos y \(\frac{dy}{dx}\) = -sin x

This allows \(\frac{dy}{dx}\) = – \(\frac{sin x}{1 + cos y}\)
where y ≠ (2n + 1) π

 

More from Calculus
Relation and Functions Limits Formula
Continuity Rules Differentiability Rules
Integral Formula Inverse Trigonometric function
Formulas
Application of Integrals Logarithm Formulas

 

Share with your Friends

One Comment

  1. Chilaka prasad Chilaka prasad November 2, 2019

    Learn with fun.

Leave a Reply

error: Content is protected !!